If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19x=10
We move all terms to the left:
2x^2-19x-(10)=0
a = 2; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·2·(-10)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-21}{2*2}=\frac{-2}{4} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+21}{2*2}=\frac{40}{4} =10 $
| z+17=18 | | 78=x+15 | | 7x−3=3x+2 | | 125=x+70 | | 5/x=6/30 | | -5x+12=-36 | | -5m+12=-36 | | 4x-3.25=12.75 | | 11-4x=32-18x+12 | | A=7n+10 | | 34134132x=1 | | 3x^2+4x−7=0 | | 3x2+4x−7=0 | | -7x-10-15x=-22x+15 | | 5^(3x-7)+11=16 | | X-2(31-3x)=13 | | 10a^2-500=0 | | 81^(x-16)=9^(3x) | | 6k^2+3k+3=0 | | 81^x-16=9^3x | | 81x-16=93x | | C=6x+7000 | | 7/8y-33/2+5/4=y/16 | | 5x^2-14x+6=0 | | z^2-46z=0 | | 14y-264+20=y | | 3x=x+11+7 | | q^2-39q=0 | | x+4/2+x/5=9 | | 4(t+4/1)=3 | | j^2-6j+9=0 | | 1x+4=28 |